Winery Wastewater BMPs and Land Application Guideline

Prepared for CV-SALTS

Based on research sponsored by the Wine Institute

21 January 2010

Kennedy/Jenks Consultants

Engineers & Scientists

Wine Institute Water, Salt and Nitrogen Management Activities

TOPICS

- The Wine Institute's involvement in water management
- Last regulatory guidelines for winery wastewater discharge - 1980

2002 - 2010 technical studies and key research results:

- Land Application Field Studies
- Waste Minimization in Wineries

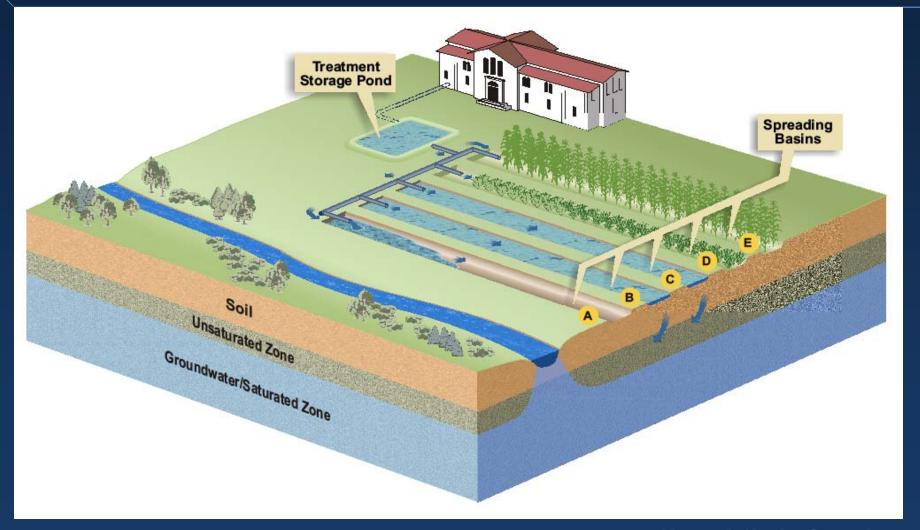
Proposed BMPs and land application guidelines

Wine Institute Water and Salt Management Goals and Objectives

- Develop industry-wide standards for conservation and sustainability
- Update 1980 land application guidelines
- Develop tools for monitoring and analysis
- Establish BMPs and land application guidelines

Wine Institute Project History

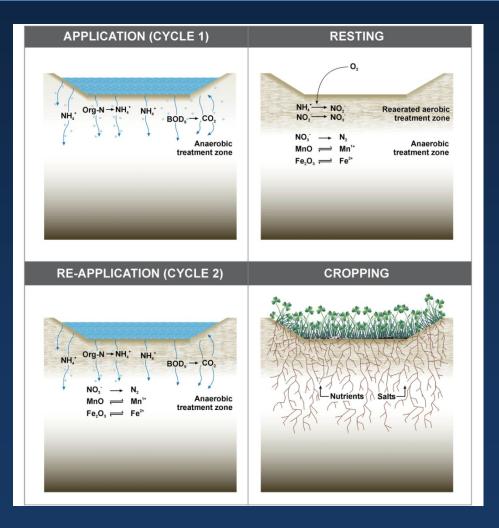
- 2002: Sustainable Winegrowing Program Initiated
- 2002 2004 Field Studies of Land Application
- 2004: Land Application Study Report and Proposed Guidelines
- 2002 2009 Project review with Regional Board
- 2004 2007 Waste Minimization/Source Control Study
- 2007: Sustainable Winery Practices Report
- 2008: Guidebook for Sustainable Winery Practices


Wine Institute Land Application Research

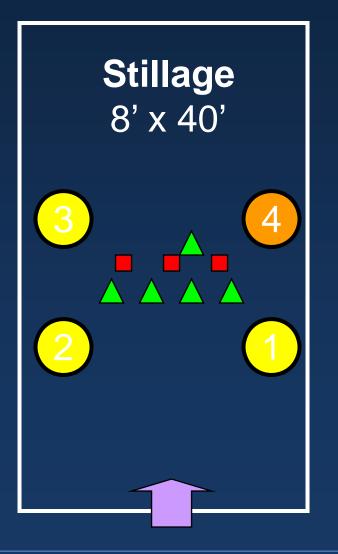
Wine Institute Land Application Research

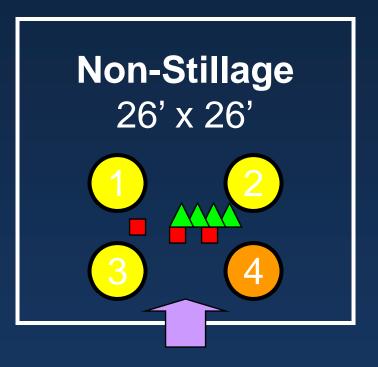
- Comparison of proposed and 1980 guidelines
- Key results from 2-year field study
- Guidelines for land application
- Criteria for site selection
- Monitoring and management program

Spreading Basins



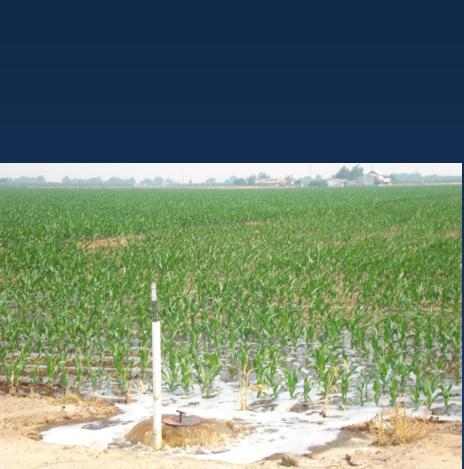
Comparison of Guidelines


Metcalf & Eddy (1980) Proposed (2003)


Objective	Manage odor and nuisance	Avoid potential groundwater impacts
Site Characterization and Selection	 Soil permeability > 2 in/hr 10-ft soil depth 	Soil hydraulic/chemical properties.Depth to groundwater
Load Limiting Constituent	Hydraulic criteria only: • 2.5 – 3.7 in/cycle • 24-hour max infiltration time	 Consider both flow and chemistry: Application rate < soil water storage Evaluate pH, Total N, BOD₅, TDS/FDS
Crush Season Management	 Allow 6 to 13 days resting Roto-till or disk to remove "leathers" 	 Rest cycle length tied to soil re-aeration Till and repack to control infiltration
Non-Crush Season Management	 Crop the spreading basins Re-grade surfaces Deep tillage if needed 	 Crop to remove N and salt Define protocol for non-crush irrigation Manage deep tillage to avoid excess drainage

Land Application Treatment Process

Experimental Design – Test Basin Instrumentation



- Deep Lysimeter
- Shallow Lysimeter
- Soil Gas Probe
- Soil Moisture Probe Kennedy/Jenks Consultants

Engineers & Scientists

Experimental Test Plots

Results of Two-Year Study

Observations	
 Soil salt storage remained the same or small increase 	
 Alkalinity, calcium higher; potas 	sium lower
• Removal of BOD_5 is 70–90% in t	op 1 foot
Denitrification following rest cycle	cle
Annual crop uptake	
 Removal limited if BOD₅ is low of 	or drainage is too rapid
Soluble during loading, precipit	ates during rest
Presence indicates denitrification	
 Soil and soil water pH not affected 	
 Soil pH cycles are buffered annually 	
 Correct by managing load and rest cycles 	
Minimize ponding	Kennedy/Jenks Consultants
	 Soil salt storage remained the set Alkalinity, calcium higher; potase Removal of BOD₅ is 70–90% in te Denitrification following rest cyce Annual crop uptake Removal limited if BOD₅ is low of Soluble during loading, precipite Presence indicates denitrification Soil and soil water pH not affect Soil pH cycles are buffered annual Correct by managing load and removal

Proposed Land Application Guidelines

- 1. Site Selection and characterization
- 2. Limiting constituent analysis
- 3. Management of process water application
- 4. Program management (acreage required, cropping, source control, monitoring and reporting)

Spreading Basin Site Selection

Properties	Desirable Characteristics
Groundwater	Depth greater than 15 ft Separate from drinking water aquifer
Soil infiltration rate, 5 ft soil	> 0.6 in / hr without restrictive layers
Available soil water storage capacity, 5 ft soil	> 4 inches Water must be held in the soil to be treated
Soil chemical / physical properties, top 5 ft	Characterize: pH, salinity, N, P, K, Ca, Na, Mg, CI, SO4, CEC, OM in each soil layer
	Limits: pH , EC , ESP , clay
Layout and surrounding conditions	Avoid sites near property lines, water features, water supplies

Limiting Constituent Analysis

Evaluate limits for:

Water volume, BOD5, FDS, nitrogen, pH

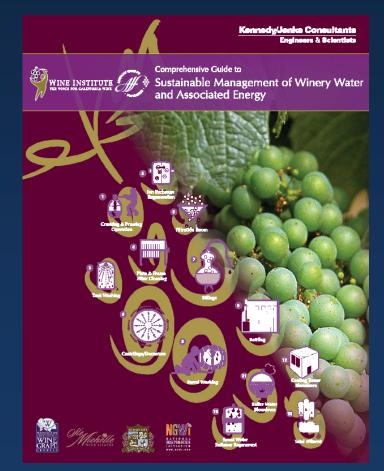
	• To control pH
Pre-Treatment	• If Total N >> BOD5
	 If FDS is too high, expand source control
Hydraulic limit	
on loading rate	 Available water holding capacity of soil
per application	

Land Application Management

Properties	Observations
BOD ₅ loading rates	 Apply sufficient BOD₅ to denitrify all nitrate-N But minimize appearance of Fe and Mn
Loading rate per application	 Maximum hydraulic loading rate is the lower of: Available water holding capacity of soil BOD₅ load up to 7,000 lb/Ac
Resting time	 Rest between loading cycles to allow: Nitrification of ammonia-N Precipitation of iron and manganese No reapplication until soil water content at 2 feet depth indicates air entry (field capacity)
	Kennedy/Jenks Consultan

Engineers & Scientists

Monitoring Plan Elements


- Groundwater monitoring Ongoing for most sites with shallow groundwater
- 2. Vadose zone monitoring Soil-water monitoring, irrigation scheduling to control percolation
- 3. Log of activities water application timing, amounts, and field observations. Track cumulative loadings by field and crop uptake records
- 4. Annual program evaluation Is acreage adequate for loads? Use BPTC, identify high strength waste streams, apply Wine Institute BMPs

Waste Minimization Studies for Wineries

- Case Studies
- 2004 Draft Waste Minimization Report
- 2007 Draft Best Practices Report

Comprehensive Guide to Sustainable Management of Winery Water and Associated Energy

- Wine Institute guidance for BPTC
- Approach for evaluation of water, constituent use, energy to manage water
- Can be used by both large and small wineries (other industries too)
- Science-based, practical, coordinated with regulators
- Tools for benchmarking, identifying opportunities for improvement, and tracking success

Possible Committee Questions

- 1. Will this practice improve salt / nitrate management?
- 2. Is the nitrogen loss coefficient consistent with that seen in other areas / similar materials?
- 3. Should this practice be applied to all winery facilities, other facilities?
- 4. Are there other salt management technologies that should be added in the future?